the prevalence package
tools for prevalence assessment studies.

Calculate confidence intervals for prevalences and other proportions

Description

The propCI function calculates five types of confidence intervals for proportions:

  • Wald interval (= Normal approximation interval, asymptotic interval)
  • Agresti-Coull interval (= adjusted Wald interval)
  • Exact interval (= Clopper-Pearson interval)
  • Jeffreys interval (= Bayesian interval)
  • Wilson score interval

Usage

propCI(x, n, method = "all", level = 0.95, sortby = "level")

Arguments

x Number of successes (positive samples)
n Number of trials (sample size)
method Confidence interval calculation method; see details
level Confidence level for confidence intervals
sortby Sort results by "level" or "method"

Details

Five methods are available for calculating confidence intervals. For convenience, synonyms are allowed.

"agresti.coull", "agresti-coull", "ac"

\[\tilde{n} = n + z_{1-\frac{\alpha}{2}}^2\] \[\tilde{p} = \frac{1}{\tilde{n}}(x + \frac{1}{2} z_{1-\frac{\alpha}{2}}^2)\] \[\tilde{p} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}}\]

"exact", "clopper-pearson", "cp"

\[(Beta(\frac{\alpha}{2}; x, n - x + 1), Beta(1 - \frac{\alpha}{2}; x + 1, n - x))\]

"jeffreys", "bayes"

\[(Beta(\frac{\alpha}{2}; x + 0.5, n - x + 0.5), Beta(1 - \frac{\alpha}{2}; x + 0.5, n - x + 0.5))\]

"wald", "asymptotic", "normal"

\[p \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}\]

"wilson"

\[\frac{p + \frac{z_{1-\frac{\alpha}{2}}^2}{2n} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n} + \frac{z_{1-\frac{\alpha}{2}}^2}{4n^2}}}{1 + \frac{z_{1-\frac{\alpha}{2}}^2}{n}}\]

Value

Data frame with seven columns:

x Number of successes (positive samples)
n Number of trials (sample size)
p Proportion of successes (prevalence)
method Confidence interval calculation method
level Confidence level
lower Lower confidence limit
upper Upper confidence limit

Note

In case the observed prevalence equals 0% (ie, x == 0), an upper one-sided confidence interval is returned. In case the observed prevalence equals 100% (ie, x == n), a lower one-sided confidence interval is returned. In all other cases, two-sided confidence intervals are returned.

Examples

## All methods, 95% confidence intervals
propCI(x = 142, n = 742)
#>     x   n         p        method level     lower     upper
#> 1 142 742 0.1913747 agresti.coull  0.95 0.1646432 0.2212853
#> 2 142 742 0.1913747         exact  0.95 0.1636684 0.2215588
#> 3 142 742 0.1913747      jeffreys  0.95 0.1643017 0.2208498
#> 4 142 742 0.1913747          wald  0.95 0.1630697 0.2196796
#> 5 142 742 0.1913747        wilson  0.95 0.1646876 0.2212409
## Wald-type 90%, 95% and 99% confidence intervals
propCI(x = 142, n = 742, method = "wald", level = c(0.90, 0.95, 0.99))
#>     x   n         p method level     lower     upper
#> 1 142 742 0.1913747   wald  0.90 0.1676204 0.2151289
#> 2 142 742 0.1913747   wald  0.95 0.1630697 0.2196796
#> 3 142 742 0.1913747   wald  0.99 0.1541757 0.2285736